Phosphoproteomic Analysis Using the WW and FHA Domains as Biological Filters.

نویسندگان

  • Md Hasanuzzaman Shohag
  • Tomoki Nishioka
  • Rijwan Uddin Ahammad
  • Shinichi Nakamuta
  • Yoshimitsu Yura
  • Tomonari Hamaguchi
  • Kozo Kaibuchi
  • Mutsuki Amano
چکیده

Protein phosphorylation plays a key role in regulating nearly all intracellular biological events. However, poorly developed phospho-specific antibodies and low phosphoprotein abundance make it difficult to study phosphoproteins. Cellular protein phosphorylation data have been obtained using phosphoproteomic approaches, but the detection of low-abundance or fast-cycling phosphorylation sites remains a challenge. Enrichment of phosphoproteins together with phosphopeptides may greatly enhance the spectrum of low-abundance but biologically important phosphoproteins. Previously, we used 14-3-3ζ to selectively enrich for HeLa cell lysate phosphoproteins. However, because 14-3-3 does not isolate phosphoproteins lacking the 14-3-3-binding motif, we looked for other domains that could complementarily enrich for phosphoproteins. We here assessed and characterized the phosphoprotein binding domains Pin1-WW, CHEK2-FHA, and DLG1-GK. Using a strategy based on affinity chromatography, phosphoproteins were collected from the lysates of HeLa cells treated with phosphatase inhibitor or cAMP activator. We identified different subsets of phosphoproteins associated with WW or FHA after calyculin A, okadaic acid, or forskolin treatment. Our Kinase-Oriented Substrate Screening (KiOSS) method, which used phosphoprotein-binding domains, showed that WW and FHA are applicable and useful for the identification of novel phospho-substrates for kinases and can therefore be used as biological filters for comprehensive phosphoproteome analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of PhosphoThreonine/Serine Recognition and Specificity for Modular Domains from All-atom Molecular Dynamics

BACKGROUND Phosphopeptide-binding domains mediate many vital cellular processes such as signal transduction and protein recognition. We studied three well-known domains important for signal transduction: BRCT repeats, WW domain and forkhead-associated (FHA) domain. The first two recognize both phosphothreonine (pThr) and phosphoserine (pSer) residues, but FHA has high specificity for pThr resid...

متن کامل

NMR structure of the forkhead-associated domain from the Arabidopsis receptor kinase-associated protein phosphatase.

Forkhead-associated (FHA) domains are phosphoprotein-binding modules found in diverse signaling proteins that bind partners phosphorylated on threonine or serine. Kinase-associated protein phosphatase from Arabidopsis employs its FHA domain for negative regulation of receptor-like kinase signaling pathways, which are important in plant development. The solution structure of the free state of ki...

متن کامل

Diverse but overlapping functions of the two forkhead-associated (FHA) domains in Rad53 checkpoint kinase activation.

Forkhead-associated (FHA) domains are phosphothreonine-binding modules prevalent in proteins with important cell cycle and DNA damage response functions. The yeast checkpoint kinase Rad53 is unique in containing two FHA domains. We have generated novel recessive rad53 alleles with abolished FHA domain functions resulting from Ala substitution of the critical phosphothreonine-binding residues Ar...

متن کامل

Structure of FBP11 WW1-PL ligand complex reveals the mechanism of proline-rich ligand recognition by group II/III WW domains.

FBP11/HYPA is a mammalian homologue of yeast splicing factor Prp40. The first WW domain of FBP11/HYPA (FBP11 WW1) is essential for preventing severe neurological diseases such as Huntington disease and Rett syndrome and strongly resembles the WW domain of FCA, the essential regulator for flowering time control. We have solved the structure of FBP11 WW1 and a Pro-Pro-Leu-Pro ligand complex, and ...

متن کامل

Atomistic Modelling of Phosphopeptide Recognition for Modular Domains

This review aims at discussing the molecular details of binding specificity, promiscuity and mechanisms of phosphopeptide recognition to modular domains using computational tools. Protein–phosphoprotein interactions are the driving forces that underline multiple signalling events which are important in cellular function. Understanding protein–phosphopeptide recognition assists designing phospho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell structure and function

دوره 40 2  شماره 

صفحات  -

تاریخ انتشار 2015